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1 CHAPTER ONE                                                                              

EXPONENTIAL, LOGARITHMIC, AND INVERSE TRIGONOMETRIC 

FUNCTIONS 

 

1.1 EXPONENTIAL AND LOGARITHMIC FUNCTIONS 

1.1.1 Irrational Exponents 

- If b is a nonzero real number, then nonzero integer powers of b are defined by 

𝑏𝑛 = 𝑏 × 𝑏 × … × 𝑏 𝑎𝑛𝑑 𝑏−𝑛 =
1

𝑏𝑛
 

- If p/q is a positive rational number expressed in lowest terms, then 

𝑏𝑝 𝑞⁄ = √𝑏𝑝
𝑞

= ( √𝑏
𝑞

)
𝑝

 𝑎𝑛𝑑 𝑏−𝑝 𝑞⁄ =
1

𝑏𝑝 𝑞⁄
 

- If b is negative, then some fractional powers of b will have imaginary values—the 

quantity (−2)
1/2

 = √−2, for example. 

- There are various methods for defining irrational powers such as 

2𝜋 , 3√2, 𝜋−√5  

Example:  2
π
  

 

 

𝑏𝑝𝑏𝑞 = 𝑏𝑝+𝑞  ,     
𝑏𝑞

𝑏𝑞
= 𝑏𝑝−𝑞 , (𝑏𝑝)𝑞 = 𝑏𝑝𝑞  
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1.1.2 The Family of Exponential Functions 

- A function of the form f(x) = b
x
, where b > 0, is called an exponential function with 

base b. Some examples are 

𝑓(𝑥) = 2𝑥,      𝑓(𝑥) = (
1

2
)

𝑥

,      𝑓(𝑥) = 𝜋𝑥  

 

Figure 1-1 

 The graph passes through (0, 1) because b
0
 = 1. 

 If b > 1, the value of b
x
 increases as x increases. As you traverse the graph of y = b

x
 

from left to right, the values of b
x
 increase indefinitely. If you traverse the graph from 

right to left, the values of b
x
 decrease toward zero but never reach zero. Thus, the x-

axis is a horizontal asymptote of the graph of b
x
. 

 If 0 < b < 1, the value of b
x
 decreases as x increases. As you traverse the graph of y = 

b
x
 from left to right, the values of b

x
 decrease toward zero but never reach zero. Thus, 

the x-axis is a horizontal asymptote of the graph of b
x
. If you traverse the graph from 

right to left, the values of b
x
 increase indefinitely. 

 If b = 1, then the value of b
x
 is constant. 
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Figure 1-2 the family of b
x 

- The graph of y = (1/b)
x
 is the reflection of the graph of y = b

x
 about the y-axis. This is 

because replacing x by −x in the equation y = b
x
 yields 

y = b
−x

 = (1/b)
x 

 

Theorem 1-1  

 If b > 0 and b ≠ 1, then: 

(a) The function f(x) = b
x
 is defined for all real values of x, so its natural domain is (−∞, +∞). 

(b) The function f(x) = b
x
 is continuous on the interval (−∞, +∞), and its range is (0, +∞). 

Example 1.1 Sketch the graph of the function f(x) = 1 − 2
x
 and find its domain and range. 

Solution: 

1. f(x)  = 2
x
 

2. f(x)  = -2
x
 

3. f(x)  = 1-2
x
 

The domain of f is (−∞, +∞) and the range is (−∞, 1). 
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1.1.3 The Natural Exponential Function 

Exponential functions (e), is a certain irrational number whose value to six decimal places is 

  e ≈ 2.718282 

- If b = e and curve y = b
x
 then y = e

x
. 

- The tangent line to the graph of y = e
x
 at (0, 1) has slope 1. 

 

The function f(x) = e
x
 is called the natural exponential function. To simplify typography, the 

natural exponential function is sometimes written as exp(x), in which case the relationship 

e
x1+x2 

= e
x1

e
x2

 would be expressed as 

exp(x1 + x2) = exp(x1) exp(x2) 

- The constant e also arises in the context of the graph of the equation 

𝑦 = (1 +
1

𝑥
)

𝑥

 

- The below figure and table, y = e is a horizontal asymptote of this graph, and the 

limits 

lim
𝑥→+∞

(1 +
1

𝑥
)

𝑥

= 𝑒   𝑎𝑛𝑑  lim
𝑥→−∞

(1 +
1

𝑥
)

𝑥

= 𝑒 

- These limits can be derived from the limit 

lim
𝑥→0

(1 + 𝑥)1 𝑥⁄ = 𝑒 
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Figure 1-3 

 

1.1.4 Logarithmic Functions 

- If b > 0 and b ≠1, then for a positive value of x the expression 

log𝑏 𝑥       (read “the logarithm to the base b of x”) 

 

- We call the function 𝑓(𝑥) = log𝑏 𝑥 the logarithmic function with base b. 

Theorem 1.2 

 If b > 0 and b ≠1, then b
x
 and logb x are inverse functions. 

 

Figure 1-4 
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- The most important logarithm function which is the one with base e is called the 

natural logarithm function because the function loge x is the inverse of the natural 

exponential function e
x
. It is standard to denote the natural logarithm of x by ln x (read 

“ell en of x”), rather than loge x. 

-  

 

As shown in below table, the inverse relationship between b
x
 and logb x produces a 

correspondence between some basic properties of those functions. 

 

 

 

- In special case where b=e, these equations become  

 

- In words, the functions b
x
 and logb x cancel out the effect of one another when 

composed in either order; for example, 
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1.1.5 Solving Equations Involving Exponentials and Logarithms 

Theorem 1.3 (Algebraic Properties of Logarithms) 

 If b > 0, b ≠ 1, a > 0, c > 0, and r is any real number, then: 

(a) logb (ac) = logb a + logb c    Product property 

(b) logb (a/c) = logb a − logb c   Quotient property 

(c) logb (a
r
) = r logb a                Power property 

(d) logb (1/c) = −logb c    Reciprocal property 

Example 1.2 Find x such that 

(a) log x =√2   (b) ln(x + 1) = 5   (c) 5
x
 = 7 

 

Solution (a). Converting the equation to exponential form yields 

x = 10
√2

 ≈ 25.95 

Solution (b). Converting the equation to exponential form yields 

x + 1 = e
5
 or x = e

5
 − 1 ≈ 147.41 

Solution (c). Converting the equation to logarithmic form yields 

x = log5 7 ≈ 1.21 

Alternatively,  

x ln 5 = ln 7     or     x = ln 7/ln 5≈ 1.21 

Example 1.3 A satellite that requires 7 watts of power to operate at full capacity is equipped 

with a radioisotope power supply whose power output P in watts is given by the equation 

P = 75 e
−t/125

 

where t is the time in days that the supply is used. How long can the satellite operate at full 

capacity? 

Solution. The power P will fall to 7 watts when 

7 = 75e
−t/125

 

The solution for t is as follows: 

7/75 = e
−t/125

 

ln(7/75) = ln(e
−t/125

) 

ln(7/75) = −t/125 

t = −125 ln(7/75) ≈ 296.4 

so the satellite can operate at full capacity for about 296 days. 
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Example 1.4 Solve   
𝑒𝑥−𝑒−𝑥

2
= 1 for x 

Solution. Multiplying both sides of the given equation by 2 yields 

e
x
 − e

−x
 = 2 

or equivalently, 

e
x
 – (1/e

x
) = 2 

Multiplying through by e
x
 yields 

e
2x

 − 1 = 2e
x
  or  e

2x
 − 2e

x
 − 1 = 0 

This is really a quadratic equation in disguise, as can be seen by rewriting it in the form 

(e
x
)

2
 − 2e

x
 − 1 = 0 

and letting u = e
x
 to obtain 

u
2
 − 2u − 1 = 0 

Solving for u by the quadratic formula yields 

 

Since u = e
x
 

 

But e
x
 cannot be negative 

 

 

1.1.6 Change of Base Formula for Logarithms 

log𝑏 𝑥 =
𝑙𝑛 𝑥

𝑙𝑛 𝑏
 

Example 1.5 Use a calculating utility to evaluate log2 5 by expressing this logarithm in terms 

of natural logarithms. 

Solution.  

log2 5 = ln 5 / ln 2 ≈ 2.321928 
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1.1.7 Logarithmic Scales in Science and Engineering 

- Logarithms are used in science and engineering to deal with quantities whose units 

vary over an excessively wide range of values.  

- For example, the “loudness” of a sound can be measured by its intensity I (in watts 

per square meter), which is related to the energy transmitted by the sound wave—the 

greater the intensity, the greater the transmitted energy, and the louder the sound is 

perceived by the human ear. 

- Sound level β,  

β = 10 log(I / I0) 

where I0 = 10
−12

 W/m
2
 is a reference intensity close to the threshold of human 

hearing, I is intensity. 

Example 1.6 A space shuttle taking off generates a sound level of 150 dB near the launch-

pad. A person exposed to this level of sound would experience severe physical injury. By 

comparison, a car horn at one meter has a sound level of 110 dB, near the threshold of pain 

for many people. What is the ratio of sound intensity of a space shuttle take off to that of a 

car horn? 

Solution. Let I1 and β1 (= 150 dB) denote the sound intensity and sound level of the space 

shuttle taking off, and let I2 and β2 (= 110 dB) denote the sound intensity and sound level of a 

car horn. Then 

I1 / I2 = (I1 / I0) / (I2 / I0) 

log (I1 / I2) = log (I1 / I0) – log (I2 / I0) 

10 log (I1 / I2) = 10 log (I1 / I0) − 10 log (I2 / I0) = β1 − β2 

10 log (I1 / I2) = 150 − 100 = 40 

log (I1 / I2) = 4 

Thus, I1 / I2 = 104, which tells us that the sound intensity of the space shuttle taking off is 

10,000 times greater than a car horn! 
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1.2 DERIVATIVES AND INTEGRALS INVOLVING LOGARITHMIC 

FUNCTIONS 

1.2.1 Derivatives of Logarithmic Functions 

- f(x) = ln x is differentiable for x > 0 by using the derivative definition to find its 

derivative. To obtain this derivative, we need the fact that ln x is continuous for x > 0.  

- Since e
x
 is continuous, we know that ln x is continuous for x > 0.  

 

A derivative formula for the general logarithmic function logb x can be obtained: 

 

 

Example 1.7 

(a) Figure 1.5 shows the graph of y = ln x and its tangent lines at the points x = 1/2, 1, 3, and 

5. Find the slopes of those tangent lines. 

(b) Does the graph of y = ln x have any horizontal tangent lines? Use the derivative of ln x to 

justify your answer. 

Solution (a). The slopes of the tangent lines at the points x = 1/2, 1, 3, and 5 are 1/x = 2, 1, 

1/3, and 1/5, respectively, which is consistent with Figure 1.5. 

Solution (b). It does not appear from the graph of y = ln x that there are any horizontal 

tangent lines. This is confirmed by the fact that dy/dx = 1/x is not equal to zero for any real 

value of x. 

 

Figure 1-5 
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If u is a differentiable function of x, and if u(x) > 0, then applying the chain rule to produce 

the following generalized derivative formulas: 

 

Example 1.8: Find 

 

Solution.  u = x
2
 + 1 we obtain 

 

 

Example 1.9: Find 

 

The derivative of ln |x| for x ≠ 0 can be obtained by considering the cases x > 0 and x < 0 

separately: 

Case x > 0. In this case |x| = x, so 

 

Case x < 0. In this case |x| = −x, so it follows that 
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Example 1.10 

 

1.2.2 Logarithmic Differentiation 

Example 1.11 The derivative of 

 

Solution: 

 

 

1.2.3 Integrals Involving ln x 

The function ln x is an antiderivative of 1/x on the interval (0, +∞), whereas the function ln |x| 

is an antiderivative of 1/x on each of the intervals (−∞, 0) and (0, + ∞). 

 

Example 1.12 Evaluate  

 

Solution: 
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Example 1.13: Evaluate  

∫ 𝒕𝒂𝒏𝒙 𝒅𝒙 

Solution: 

 

 

Important point: any integral of the form 

 

(where the numerator of the integrand is the derivative of the denominator) can be evaluated 

by the u-substitution u = g(x), du = g’(x) dx, since this substitution yields 

 

 

1.2.4 Derivatives of Real Powers of x 

 

Let y = x
r
, where r is a real number. The derivative dy/dx can be obtained by logarithmic 

differentiation as follows: 
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1.3 DERIVATIVES OF INVERSE FUNCTIONS; DERIVATIVES AND 

INTEGRALS INVOLVING EXPONENTIAL FUNCTIONS 

1.3.1 Differentiability of Inverse Functions 

Example 1.14: Suppose that f is a one-to-one differentiable function such that f(2) = 1 and 

f’(2) = 3/4 . Then the tangent line to y = f(x) at the point (2, 1) has equation 

𝑦 − 1 =
3

4
(𝑥 − 2) 

Since the graph of y = f
−1

(x) is the reflection of the graph of y = f(x) about the line y = x, the 

tangent line to y = f
−1

(x) at the point (1, 2) is the reflection about the line y = x of the tangent 

line to y = f(x) at the point (2, 1) (Figure 1-6). Its equation can be obtained from that of the 

tangent line to the graph of f by interchanging x and y: 

 

Figure 1-6 

x − 1 = 3/4 (y − 2)        or       y − 2 = 4/3 (x − 1) 

Notice that the slope of the tangent line to y = f
−1

(x) at x = 1 is the reciprocal of the slope of 

the tangent line to y = f(x) at x = 2. That is, 

(f
−1

)’(1) = 1/f’(2)= 4/3                                   (1) 

Since 2 = f
−1

(1) for the function f in this example, it follows that f’(2) = f’(f
−1

(1)). Thus, 

Formula (1) can also be expressed as 

 

In general, if f is a differentiable and one-to-one function, then 

                  (2) 
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provided f’(f
−1

(x)) ≠ 0. 

Formula (2) can be confirmed using implicit differentiation. The equation y = f
−1

(x) is 

equivalent to x = f(y). Differentiating with respect to x we obtain 

 
Also from x = f(y) we have dx/dy = f’(y), which gives the following alternative version of 

Formula (2): 

           (3) 

1.3.2 Increasing or Decreasing Functions are One-To-One 

Theorem 1.4 

Suppose that the domain of a function f is an open interval on which f’(x) > 0 or on which 

f’(x) < 0. Then f is one-to-one, f
−1

(x) is differentiable at all values of x in the range of f, and 

the derivative of f
−1

(x) is given by Formula (2). 

 

Example 1.15: Consider the function f(x) = x
5
 + x + 1. 

(a) Show that f has a differentiable inverse function. 

(b) Use implicit differentiation to find a formula for the derivative of f
−1

. 

(c) Compute (f−
1
)’(1). 

Solution (a). Since f’(x) = 5x
4
 + 1 > 0 for all real values of x, it follows from Theorem 1.4 

that f is one-to-one on the interval (−∞, +∞) and has a differentiable inverse function. 

Solution (b). Let y = f
−1

(x). Differentiating x = f(y) = y
5
 + y + 1 implicitly with respect to x 

yields 

(4) 
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Solution (c). From Equation (4), 

 

Thus, we need to know the value of y = f
−1

(x) at x = 1, which we can obtain by solving the 

equation f(y) = 1 for y. This equation is y
5
 + y + 1 = 1, which, by inspection, is satisfied by y 

= 0. Thus, 

 

1.3.3 Derivatives of Exponential Functions 

       (5) 

        (6) 

If u is a differentiable function of x, then it follows from (5) and (6) that 

       (7 & 8) 

 

Example 1.16: The following computations use Formulas (5), (7) and (8). 
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Example 1.16: Use logarithmic differentiation to find d/dx [(x
2
 + 1)

sin x
] 

Solution. Setting y = (x
2
 + 1)

sin x
 we have 

ln y = ln[(x
2
 + 1)

sin x
] = (sin x) ln(x

2
 + 1) 

Differentiating both sides with respect to x yields 

 

 

1.3.4 Integrals Involving Exponential Functions 

   (9 & 10) 

Example 1.17: 

 

Example 1.18: 

 

Solution. Let u = 5x so that du = 5 dx or dx = 1/5 du, which yields 
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Example 1.19: The following computations use Formula (10). 

Solution.  

 

Example 1.19: Evaluate 

 

Solution. Make the u-substitution 

u = 1 + e
x
, du = e

x
 dx 

and change the x-limits of integration (x = 0, x = ln 3) to the u-limits 

u = 1 + e
0
 = 2, u= 1 + e

ln 3 
= 1 + 3 = 4 

This yields 
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1.4 GRAPHS AND APPLICATIONS INVOLVING LOGARITHMIC 

AND EXPONENTIAL FUNCTIONS 

1.4.1 Some Properties of e
x
 and ln x 

 

Figure 1-7 

 

We can verify that y = e
x
 is increasing and its graph is concave up from its first and second 

derivatives. For all x in (−∞, +∞) we have 

 

The first of these inequalities demonstrates that e
x
 is increasing on (−∞, +∞), and the second 

inequality shows that the graph of y = e
x
 is concave up on (−∞, +∞). Similarly, for all x in (0, 

+∞) we have 
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1.4.2 Graphing Exponential and Logarithmic Functions 

Example 1.20: Sketch the graph of 𝑦 = 𝑒−𝑥2 2⁄ and identify the locations of all relative 

extrema and inflection points. 

Solution: 

• Symmetries: Replacing x by −x does not change the equation, so the graph is symmetric 

about the y-axis. 

• x- and y-intercepts: Setting y = 0 leads to the equation 𝑒−𝑥2 2⁄ = 0, which has no solutions 

since all powers of e have positive values. Thus, there are no x-intercepts. 

Setting x = 0 yields the y-intercept y = 1. 

• Vertical asymptotes: There are no vertical asymptotes since 𝑒−𝑥2 2⁄ is continuous on (−∞, 

+∞). 

• End behaviour: The x-axis (y = 0) is a horizontal asymptote since 

 

Conclusions and graph: 

• The sign analysis of y in Figure 1-8a is based on the fact that 𝑒−𝑥2 2⁄ > 0 for all x. 

This shows that the graph is always above the x-axis. 

• The sign analysis of dy/dx in Figure 1-8a is based on the fact that dy/dx = −𝑥𝑒−𝑥2 2⁄ has the 

same sign as −x. This analysis and the first derivative test show that there is a stationary point 

at x = 0 at which there is a relative maximum. The value of y at the relative maximum is y = 

e
0
 = 1. 

• The sign analysis of d
2
y/dx

2
 in Figure 1-8a is based on the fact that 𝑑2𝑦 𝑑𝑥2 =⁄ (𝑥2 −

1)𝑒−𝑥2 2⁄ has the same sign as x
2
 − 1. This analysis shows that there are inflection points at x 

= −1 and x = 1. The graph changes from concave up to concave down at x = −1 and from 



Chapter 1: Exponential, Logarithmic, and Inverse Trigonometric Functions 

21 
 

concave down to concave up at x = 1. The coordinates of the inflection points are (−1, e
−1/2

) ≈ 

(−1, 0.61) and (1, e
−1/2

) ≈ (1, 0.61). 

The graph is shown in Figure 1-8b. 

 

Figure 1-8 

 

Example 1.21: Use a graphing utility to generate the graph of f(x) = (ln x)/x, and discuss 

what it tells you about relative extrema, inflection points, asymptotes, and end behaviour. Use 

calculus to find the locations of all key features of the graph. 

Solution. Figure 1-9 shows a graph of f produced by a graphing utility. The graph suggests 

that there is an x-intercept near x = 1, a relative maximum somewhere between x = 0 and x = 

5, an inflection point near x = 5, a vertical asymptote at x = 0, and possibly a horizontal 

asymptote y = 0. For a more precise analysis of this information we need to consider the 

derivatives 

 

Figure 1-9 
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Relative extrema: Solving f’(x) = 0 yields the stationary point x = e (verify). Since 

 
there is a relative maximum at x = e ≈ 2.7 by the second derivative test. 

• Inflection points: Since f(x) = (ln x)/x is only defined for positive values of x, the second 

derivative f’’(x) has the same sign as 2 ln x − 3. We leave it for you to use the inequalities (2 

ln x − 3) < 0 and (2 ln x − 3) > 0 to show that f’’(x) < 0 if x < e
3/2 

and f’’(x) > 0 if x > e
3/2

. 

Thus, there is an inflection point at x = e
3/2 

≈ 4.5. 

• Asymptotes: We will allow us to conclude that 

 

so that y = 0 is a horizontal asymptote. Also, there is a vertical asymptote at x = 0 since 

 
Intercepts: Setting f(x) = 0 yields (ln x)/x = 0. The only real solution of this equation is x = 1, 

so there is an x-intercept at this point. 

 

1.4.3 Logistic Curves 

- When a population grows in an environment in which space or food is limited, the 

graph of population versus time is typically an S-shaped curve of the form shown in 

Figure 1-10.  

- The scenario described by this curve is a population that grows slowly at first and 

then more and more rapidly as the number of individuals producing offspring 

increases. However, at a certain point in time (where the inflection point occurs) the 

environmental factors begin to show their effect, and the growth rate begins a steady 

decline.  

- Over an extended period of time the population approaches a limiting value that 

represents the upper limit on the number of individuals that the available space or 
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food can sustain. Population growth curves of this type are called logistic growth 

curves. 

 

Figure 1-10 

Example 1.22 We will see in a later chapter that logistic growth curves arise from equations 

of the form 

 

where y is the population at time t (t ≥ 0) and A, k, and L are positive constants. Show that 

Figure 1-11 correctly describes the graph of this equation when A > 1. 

 

Figure 1-11 

1.4.4 Newton’s Law of Cooling 

Example 1.23 A glass of lemonade with a temperature of 40◦F is left to sit in a room whose 

temperature is a constant 70◦F. Using a principle of physics called Newton’s Law of Cooling, 
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one can show that if the temperature of the lemonade reaches 52◦F in 1 hour, then the 

temperature T of the lemonade as a function of the elapsed time t is modelled by the equation  

T = 70 − 30e
−0.5t

 

where T is in degrees Fahrenheit and t is in hours. The graph of this equation, shown in 

Figure 1-12, conforms to our everyday experience that the temperature of the lemonade 

gradually approaches the temperature of the room. Find the average temperature Tave of the  

lemonade over the first 5 hours. 

 

Figure 1-12 

Solution. From Definition 4.8.1 the average value of T over the time interval [0, 5] is 

 

Definition (4.8.1) If f is continuous on [a, b], then the average value (or mean value) of f on 

[a, b] is defined to be 

 

             (1) 

To evaluate this integral, we make the substitution 

u = −0.5t         so that     du = −0.5dt          (or dt = −2 du) 

With this substitution, if 

t = 0,           u= 0 

t = 5,        u= (−0.5)5 = −2.5 

Thus, (1) can be expressed as 
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1.5 L’HÔPITAL’S RULE; INDETERMINATE FORMS 

1.5.1 Indeterminate Forms of Type 0/0 

lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
 

in which f(x)→0 and g(x)→0 as x→a is called an indeterminate form of type 0/0. Some 

examples encountered earlier in the text are 

 

 

L’Hôpital’s rule, converts the given indeterminate form into a limit involving derivatives that 

is often easier to evaluate. 

Theorem 1.5 (L’Hôpital’s Rule for Form 0/0)  

Suppose that f and g are differentiable functions on an open interval containing x = a, except 

possibly at x = a, and that 

lim
𝑥→𝑎

𝑓(𝑥) = 0    𝑎𝑛𝑑   lim
𝑥→𝑎

𝑔(𝑥) = 0  

If lim𝑥→𝑎
𝑓(𝑥)́

𝑔(𝑥)́  exists, or if this limit is +∞or −∞, then 

lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= lim

𝑥→𝑎

�́�(𝑥)

�́�(𝑥)
 

Moreover, this statement is also true in the case of a limit as x→a
−
, x→a

+
, x→−∞, or as 

x→+∞. 

Applying L’Hôpital’s Rule 

Step 1. Check that the limit of f(x)/g(x) is an indeterminate form of type 0/0. 

Step 2. Differentiate f and g separately. 
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Step 3. Find the limit of f(x)/g(x). If this limit is finite, +∞, or −∞, then it is equal to the limit 

of f(x)/g(x). 

Example 1.24 Find the limit 

 

using L’Hôpital’s rule, and check the result by factoring. 

Solution. The numerator and denominator have a limit of 0, so the limit is an indeterminate 

form of type 0/0. Applying L’Hôpital’s rule yields 

 

This agrees with the computation 

 

 

Example 1.25 In each part confirm that the limit is an indeterminate form of type 0/0, and 

evaluate it using L’Hôpital’s rule. 

 

Solution (a). The numerator and denominator have a limit of 0, so the limit is an 

indeterminate form of type 0/0. Applying L’Hôpital’s rule yields 

 

Solution (b). The numerator and denominator have a limit of 0, so the limit is an 

indeterminate form of type 0/0. Applying L’Hôpital’s rule yields 

 

Solution (c). The numerator and denominator have a limit of 0, so the limit is an 

indeterminate form of type 0/0. Applying L’Hôpital’s rule yields 
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Solution (d). The numerator and denominator have a limit of 0, so the limit is an 

indeterminate form of type 0/0. Applying L’Hôpital’s rule yields 

 

Solution (e). The numerator and denominator have a limit of 0, so the limit is an 

indeterminate form of type 0/0. Applying L’Hôpital’s rule yields 

 

Since the new limit is another indeterminate form of type 0/0, we apply L’Hôpital’s rule 

again: 

 

Solution (f). The numerator and denominator have a limit of 0, so the limit is an 

indeterminate form of type 0/0. Applying L’Hôpital’s rule yields 
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1.5.2 Indeterminate Forms of Type ∞/∞ 

Theorem 1.6 (L’Hôpital’s Rule for Form ∞/∞)  

Suppose that f and g are differentiable functions on an open interval containing x = a, except 

possibly at x = a, and that 

lim
𝑥→𝑎

𝑓(𝑥) = ∞    𝑎𝑛𝑑   lim
𝑥→𝑎

𝑔(𝑥) = ∞  

If [lim𝑥→𝑎
𝑓(𝑥)́

𝑔(𝑥)́  ] exists, or if this limit is +∞or −∞, then 

lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= lim

𝑥→𝑎

�́�(𝑥)

�́�(𝑥)
 

Moreover, this statement is also true in the case of a limit as x→a
−
, x→a

+
, x→−∞, or as 

x→+∞. 

 

Example 1.26 In each part confirm that the limit is an indeterminate form of type ∞/∞ and 

apply L’Hôpital’s rule. 

 

Solution (a). The numerator and denominator both have a limit of +∞, so we have an 

indeterminate form of type ∞/∞. Applying L’Hôpital’s rule yields 

 

Solution (b). The numerator has a limit of −∞ and the denominator has a limit of +∞, so we 

have an indeterminate form of type ∞/∞. Applying L’Hôpital’s rule yields 

 
This last limit is again an indeterminate form of type ∞/∞. Moreover, any additional 

applications of L’Hôpital’s rule will yield powers of 1/x in the numerator and expressions 

involving csc x and cot x in the denominator; thus, repeated application of L’Hôpital’s rule 

simply produces new indeterminate forms. We must try something else. 
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1.5.3 Indeterminate Forms of Type 0.∞ 

Example 1.27 Evaluate 

 

Solution (a). The factor x has a limit of 0 and the factor ln x has a limit of −∞, so the stated 

problem is an indeterminate form of type 0·∞. There are two possible approaches: we can 

rewrite the limit as 

 

the first being an indeterminate form of type ∞/∞ and the second an indeterminate form of 

type 0/0. However, the first form is the preferred initial choice because the derivative of 1/x is 

less complicated than the derivative of 1/ ln x. That choice yields 

 

Solution (b). The stated problem is an indeterminate form of type 0·∞. We will convert it to 

an indeterminate form of type 0/0: 

 

 

1.5.4 Indeterminate Forms of Type ∞−∞ 

Example 1.28 Evaluate   

 

Solution. Both terms have a limit of +∞, so the stated problem is an indeterminate form of 

type ∞− ∞. Combining the two terms yields 

 

which is an indeterminate form of type 0/0. Applying L’Hôpital’s rule twice yields 
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1.5.5 Indeterminate Forms of Type 0
0
, ∞

0
, 1

∞
 

Example 1.29 Find  

lim
𝑥→0

(1 + sin 𝑥)1 𝑥⁄  

Solution. As discussed above, we begin by introducing a dependent variable 

y = (1 + sin x)
1/x

 

and taking the natural logarithm of both sides: 

 

 

which is an indeterminate form of type 0/0, so by L’Hôpital’s rule 

 

Since we have shown that ln y→1 as x→0, the continuity of the exponential function implies 

that e
ln y

→e
1
 as x→0, and this implies that y→e as x→0. Thus, 

lim
𝑥→0

(1 + sin 𝑥)1 𝑥⁄ = 𝑒 
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1.6 DERIVATIVES AND INTEGRALS INVOLVING INVERSE 

TRIGONOMETRIC FUNCTIONS 

1.6.1 Inverse Trigonometric Functions 

Definitions 

1. The inverse sine function, denoted by sin
−1

, is defined to be the inverse of the restricted 

sine function 

sin x, −π/2 ≤ x ≤ π/2 

2. The inverse cosine function, denoted by cos−1, is defined to be the inverse of the 

restricted cosine function 

cos x, 0 ≤ x ≤ π 

3. The inverse tangent function, denoted by tan−1, is defined to be the inverse of the 

restricted tangent function 

tan x, −π/2 < x < π/2 

4. The inverse secant function, denoted by sec−1, is defined to be the inverse of the 

restricted secant function 

sec x, 0 ≤ x ≤ π with x ≠ π/2 
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1.6.2 Evaluating Inverse Trigonometric Functions 

Example 1 Find exact values of 

(a) sin−
1
(1/√2 )                  (b) sin−

1
(−1) 

by inspection, and confirm your results numerically using a calculating utility. 

Solution (a). Because sin
−1

(1/√2) > 0, we can view x = sin
−1

(1/√2 ) as that angle in the first 

quadrant such that sin θ = 1/√2. Thus, sin
−1

(1/√2 ) = π/4. You can confirm this with your 

calculating utility by showing that sin
−1

(1/√2 ) ≈ 0.785 ≈ π/4. 

Solution (b). Because sin−1(−1) < 0, we can view x = sin−1(−1) as an angle in the fourth 

quadrant (or an adjacent axis) such that sin x = −1. Thus, sin−1(−1) = −π/2. You can confirm 

this with your calculating utility by showing that sin−1(−1) ≈ −1.57 ≈ −π/2. 

 

1.6.3 Identities for Inverse Trigonometric Functions 
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Example 2 Figure in the below shows a computer-generated graph of y = sin
−1

(sin x). One 

might think that this graph should be the line y = x, since sin
−1

(sin x) = x. Why isn’t it? 

Solution. The relationship sin
−1

(sin x) = x is valid on the interval −π/2 ≤ x ≤ π/2, so we can 

say with certainty that the graphs of y = sin
−1

(sin x) and y = x coincide on this interval (which 

is confirmed by below Figure). However, outside of this interval the relationship sin
−1

(sin x) 

= x does not hold. For example, if the quantity x lies in the interval π/2 ≤ x ≤ 3π/2, then the 

quantity x − π lies in the interval −π/2 ≤ x ≤ π/2, so  

sin
−1

[sin(x − π)] = x − π 

Thus, by using the identity sin(x − π) = −sin x and the fact that sin−1 is an odd function, we 

can express sin−1(sin x) as 

sin
−1

(sin x) = sin
−1

[− sin(x − π)] = −sin
−1

[sin(x − π)] = −(x − π) 

This shows that on the interval π/2 ≤ x ≤ 3π/2 the graph of y = sin
−1

(sin x) coincides with the 

line y = −(x − π), which has slope −1 and an x-intercept at x = π. This agrees with below 

figure. 

 

1.6.4 Derivatives of the Inverse Trigonometric Functions 
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Example 3 Find dy/dx if 

(a) y = sin
−1

(x
3
)                (b) y = sec

−1
(e

x
) 

Solution (a).  

 

Solution (b). 

 

 

1.6.5 Integration Formulas 

 

Example 4 Evaluate 

 

Solution. Substituting 

u =√3x,    du =√3 dx 

yields 

 

Example 5 Evaluate 

 

Solution. Substituting 

u = e
x
, du = e

x
 dx 

yields 
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Example 6 Evaluate 

 

where a≠0 is a constant. 

Solution. Some simple algebra and an appropriate u-substitution will allow us to use 

 

The method of Example 6 leads to the following generalizations for a > 0: 

 

Example 7 Evaluate 

 

Solution. Applying (previous eq.) with u = x and a =√2 yields 
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1.7 HYPERBOLIC FUNCTIONS AND HANGING CABLES 

1.7.1 Definitions of Hyperbolic Functions 

Definitions 

 

Example 1 

 

1.7.2 Graphs of the Hyperbolic Functions 

*The graphs of the hyperbolic functions, which are shown in the below figure, can be 

generated with a graphing utility, but it is worthwhile to observe that the general shape of the 

graph of y = cosh x can be obtained by sketching the graphs of 𝑦 =
1

2
𝑒𝑥and 𝑦 =

1

2
𝑒−𝑥separately and adding the corresponding y-coordinates [see part (a) of the figure]. 

*Similarly, the general shape of the graph of y = sinh x can be obtained by sketching the 

graphs of 𝑦 =
1

2
𝑒𝑥and 𝑦 = −

1

2
𝑒−𝑥separately and adding corresponding y-coordinates [see 

part (b) of the figure]. 
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*Observe also that 𝑦 =
1

2
𝑒𝑥 and 𝑦 =

1

2
𝑒−𝑥 are curvilinear asymptotes for y = cosh x in the 

sense that the graph of y = cosh x gets closer and closer to the graph of 𝑦 =
1

2
𝑒𝑥as x→+∞ and 

gets closer and closer to the graph of 𝑦 =
1

2
𝑒−𝑥 as x→−∞. 

 

1.7.3 Hanging Cables and Other Applications 

Hyperbolic functions arise in vibratory motions inside elastic solids and more generally in 

many problems where mechanical energy is gradually absorbed by a surrounding medium. 

They also occur when a homogeneous, flexible cable is suspended between two points, as 

with a telephone line hanging between two poles. Such a cable forms a curve, called a 

catenary (from the Latin catena, meaning “chain”). 
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1.7.4 Hyperbolic Identities 

Theorem 

 

 

represent the unit circle x
2
 + y

2
 = 1 

  

If 0 ≤ t ≤ 2π, then the parameter t can be interpreted as 

the angle in radians from the positive x-axis to the point 

(cos t, sin t) or, alternatively, as twice the shaded area 

of the sector in Figure a. Analogously, the parametric 

equations 

x = cosh t, y = sinh t (−∞ < t < +∞) 

represent a portion of the curve x
2
 − y

2
 = 1, as may be 

seen by writing 

x
2
 − y

2
 = cosh

2
 t − sinh

2
 t = 1 

and observing that x = cosh t > 0. This curve, which is 

shown in Figure b, is the right half of a larger curve 

called the unit hyperbola; this is the reason why the functions in this section are called 

hyperbolic functions. 
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1.7.5 Derivative and Integral Formulas 

Theorem 

 

Example 2 

 

Example 3 

 

We were justified in dropping the absolute value signs since cosh x > 0 for all x. 

 

Example 4 A 100 ft wire is attached at its ends to the tops of two 50 ft poles that are 

positioned 90 ft apart. How high above the ground is the middle of the wire? 

Solution. From above, the wire forms a catenary curve with equation 

 
where the origin is on the ground midway between the poles. Using Formula for the length of 

the catenary, we have 
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Using a calculating utility’s numeric solver to solve 

 

so c ≈ −25.08. Thus, the middle of the wire is y(0) ≈ 56.01 − 25.08 = 30.93 ft above the 

ground (below figure). 
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1.7.6 Inverses of Hyperbolic Functions 

 

1.7.7 Logarithmic Forms of Inverse Hyperbolic Functions 

Theorem The following relationships hold for all x in the domains of the stated inverse 

hyperbolic functions: 

 



Chapter 1: Exponential, Logarithmic, and Inverse Trigonometric Functions 

42 
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1.7.8 Derivatives and Integrals Involving Inverse Hyperbolic Functions  

Theorem 
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2 CHAPTER TWO                                                                              

PRINCIPLES OF INTEGRAL EVALUATION 

2.1 A REVIEW OF FAMILIAR INTEGRATION FORMULAS 

CONSTANTS, POWERS, EXPONENTIALS 

 

TRIGONOMETRIC FUNCTIONS 

 

HYPERBOLIC FUNCTIONS 

 

ALGEBRAIC FUNCTIONS (a > 0) 
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2.2 INTEGRATION BY PARTS 

2.2.1 The Product Rule and Integration by Parts 

        (1) 

This formula allows us to integrate f(x)g(x) by integrating f(x)G(x) instead, and in many cases 

the net effect is to replace a difficult integration with an easier one. The application of this 

formula is called integration by parts.  

In practice, we usually rewrite (1) by letting 

u = f(x),                                  du = f′(x) dx 

v = G(x),                dv = G′(x) dx = g(x) dx 

This yields the following alternative form for (1): 

          (2) 

Example 2.1 Use integration by parts to evaluate ∫ 𝑥 cos𝑥 𝑑𝑥. 

Solution. We will apply Formula (2). The first step is to make a choice for u and dv to 

put the given integral in the form u dv. We will let 

u = x      and     dv = cos x dx 

(Other possibilities will be considered later.) The second step is to compute du from u and v 

from dv. This yields 

du = dx     and      𝑣 = ∫ 𝑑𝑣  = ∫ 𝑐𝑜𝑠𝑥 𝑑𝑥  =  𝑠𝑖𝑛 𝑥 

 

The third step is to apply Formula (2). This yields 
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2.2.2 Guidelines for Integration by Parts 

For the integral x cosx dx in Example 2.1, both goals were achieved by letting u = x and dv = 

cos x dx. In contrast, u = cos x would not have been a good first choice in that example, since 

du/dx = − sin x is no simpler than u. Indeed, had we chosen 

u = cos x               dv = x dx 

 

then we would have obtained 

 

There is another useful strategy for choosing u and dv that can be applied when the integrand 

is a product of two functions from different categories in the list 

Logarithmic, Inverse trigonometric, Algebraic, Trigonometric, Exponential 

In this case you will often be successful if you take u to be the function whose category 

occurs earlier in the list and take dv to be the rest of the integrand. The acronym LIATE will 

help you to remember the order. The method does not work all the time, but it works often 

enough to be useful. 

Example 2.2 Evaluate  ∫ 𝑥𝑒𝑥 𝑑𝑥. 

Solution. In this case the integrand is the product of the algebraic function x with the 

exponential function e
x
. According to LIATE we should let 

 

 

Example 2.3 Evaluate  ∫ 𝑙𝑛𝑥 𝑑𝑥. 

Solution. One choice is to let u = 1 and dv = ln x dx. But with this choice finding v is 

equivalent to evaluating ∫ 𝑙𝑛𝑥 𝑑𝑥 and we have gained nothing. Therefore, the only 

reasonable choice is to let 

u = lnx          dv =dx 
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2.2.3 Repeated Integration by Parts 

Example 2.4 Evaluate  ∫ 𝑥2 𝑒−𝑥𝑑𝑥. 

Solution: Let 

 

 

 

The last integral is similar to the original except that we have replaced x
2
 by x. Another 

integration by parts applied to ∫ 𝑥 𝑒−𝑥 𝑑𝑥  will complete the problem. We let 

 

Finally, substituting this into the last line yields 

 

The LIATE method suggests that integrals of the form 

 

can be evaluated by letting u = sin bx or u = cos bx and dv = e
ax

 dx. However, this will require 

a technique that deserves special attention. 
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Example 2.5 Evaluate  ∫  𝑒𝑥 cos 𝑥 𝑑𝑥. 

Solution: Let 

 

      (1) 

Since the integral ∫ 𝑒𝑥 sin 𝑥 𝑑𝑥  is similar in form to the original integral ∫ 𝑒𝑥 cos𝑥 𝑑𝑥, it 

seems that nothing has been accomplished. However, let us integrate this new integral by 

parts. We let 

 

Together with Equation (1) this yields 

 

which is an equation we can solve for the unknown integral. We obtain 

 

2.2.4 A Tabular Method for Repeated Integration by Parts 

Integrals of the form 

 

Tabular Integration by Parts 

Step 1. Differentiate p(x) repeatedly until you obtain 0, and list the results in the first column. 

Step 2. Integrate f(x) repeatedly and list the results in the second column. 

Step 3. Draw an arrow from each entry in the first column to the entry that is one row down 

in the second column. 

Step 4. Label the arrows with alternating + and − signs, starting with a +. 
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Step 5. For each arrow, form the product of the expressions at its tip and tail and then 

multiply that product by +1 or −1 in accordance with the sign on the arrow. 

Add the results to obtain the value of the integral. 

Example 2.6 Evaluate ∫ 𝑥2√𝑥 − 1 𝑑𝑥 using tabular integration by parts. 

Solution: 

 

 

2.2.5 Integration by Parts for Definite Integrals 

For definite integrals the formula is 

 

Example 2.7: Evaluate  ∫ 𝑡𝑎𝑛 −1𝑥 𝑑𝑥
1

0
 

Solution: Let  

 

 

 



Chapter 1: Exponential, Logarithmic, and Inverse Trigonometric Functions 

2-7 
 

2.3 INTEGRATING TRIGONOMETRIC FUNCTIONS 

2.3.1 Integrating Powers of Sine and Cosine 

 

In the case where n = 2, these formulas yield 

 

Alternative forms of these integration formulas can be derived from the trigonometric 

identities 

 

which follow from the double-angle formulas 

 

These identities yield 
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2.3.2 Integrating Products of Sines and Cosines 

If m and n are positive integers, then the integral 

∫ 𝑠𝑖𝑛𝑚 𝑥  𝑐𝑜𝑠𝑛𝑥 𝑑𝑥 

can be evaluated by one of the three procedures stated in Table 2-1, depending on whether m 

and n are odd or even. 

Table 2-1 

 

 

Example 2.8 Evaluate 

 
Solution (a). Since n = 5 is odd, we will follow the first procedure in Table 2-1: 

 
 

Solution (b). Since m = n = 4, both exponents are even, so we will follow the third procedure 

in Table 2-1: 
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Integrals of the form 

 

can be found by using the trigonometric identities 

 
 

Example 2.9 Evaluate ∫ 𝑠𝑖𝑛 7𝑥   cos 3𝑥  𝑑𝑥 

Solution: 

 

 
 

 

2.3.3 Integrating Powers of Tangent and Secant 

 

In the case where n is odd, the exponent can be reduced to 1, leaving us with the problem of 

integrating tan x or sec x. These integrals are given by 
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2.3.4 Integrating Products of Tangents and Secants 

If m and n are positive integers, then the integral 

 

can be evaluated by one of the three procedures stated in Table 2-2, depending on whether m 

and n are odd or even. 

Table 2-2 
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Example 2.10 Evaluate 

 

Solution (a). Since n = 4 is even, we will follow the first procedure in Table 2-2: 

 

Solution (b). Since m = 3 is odd, we will follow the second procedure in Table 2-2: 

 

Solution (c). Since m = 2 is even and n = 1 is odd, we will follow the third procedure in 

Table 2-2: 

 

2.3.5 An Alternative Method for Integrating Powers of Sine, Cosine, Tangent, and 

Secant 

The methods in Tables 2-1 and 2-2 can sometimes be applied if m = 0 or n = 0 to integrate 

positive integer powers of sine, cosine, tangent, and secant without reduction formulas. For 

example, instead of using the reduction formula to integrate sin
3
 x, we can apply the second 

procedure in Table 2-1: 
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Example 2.11 

 

 

2.4 TRIGONOMETRIC SUBSTITUTIONS 

2.4.1 The Method of Trigonometric Substitution 

 

 

a is a positive constant.  

The basic idea for evaluating such integrals is to make a substitution for x that will eliminate 

the radical. For example, to eliminate the radical in the expression √𝑎2 − 𝑥2, we can make 

the substitution 

 

Example 2.12: Evaluate 

 

Solution: To eliminate the radical we make the substitution 



Chapter 1: Exponential, Logarithmic, and Inverse Trigonometric Functions 

2-13 
 

 

At this point we have completed the integration; however, because the original integral was 

expressed in terms of x, it is desirable to express cot θ in terms of x as well. This can be done 

using trigonometric identities, but the expression can also be obtained by writing substitution 

u x = 2 sin θ as sin θ = x/2 and representing it geometrically as in Figure 2-1. 

 

Figure 2-1 

From that figure we obtain 
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Example 2.13: Evaluate 

 

 

To express the solution in terms of x, we will represent the substitution x = 5 sec θ 

geometrically by the triangle in Figure 2-2, from which we obtain 

 

 

Figure 2-2 
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2.4.2 Integrals Involving ax
2
+bx+c 

Integrals that involve a quadratic expression ax
2
+bx+c, where a ǂ 0 and b ǂ0, can often be 

evaluated by first completing the square, then making an appropriate substitution. The 

following example illustrates this idea. 

Example 2.14: Evaluate 
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2.5 INTEGRATING RATIONAL FUNCTIONS BY PARTIAL 

FRACTIONS 

2.5.1 Partial Fractions 

 

 

 

 

 

 

A = 2 and B = 3 

 

where F1(x), F2(x), . . . , Fn(x) are rational functions of the form 

 

2.5.2 Finding the Form of a Partial Fraction Decomposition 

The first step in finding the form of the partial fraction decomposition of a proper rational 

function P(x)/Q(x) is to factor Q(x) completely into linear and irreducible quadratic factors, 

and then collect all repeated factors so that Q(x) is expressed as a product of distinct factors 

of the form 

(ax + b)
m
 and (ax

2
 + bx + c)

m 
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A. Linear factors 

Linear factor rule  

For each factor of the form (ax + b)
m
, the partial fraction decomposition contains the 

following sum of m partial fractions: 

 

where A1, A2, . . . , Am are constants to be determined. In the case where m = 1, only the first 

term in the sum appears. 

Example 2.15: Evaluate 

 

Solution. The integrand is a proper rational function that can be written as 

 

 

 

 

 

 

Example 2.16: Evaluate 

 

Solution. The integrand can be rewritten as 

 

Although x
2
 is a quadratic factor, it is not irreducible since x

2
 = xx. Thus, by the linear factor 

rule, x
2
 introduces two terms (since m = 2) of the form 
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                                     A + C = 0       or        A = −C = −2 

Substituting the values A = −2, B = −2, and C = 2 

 

 

 

B. Quadratic factors 

Quadratic factor rule  

For each factor of the form (ax
2
 + bx + c)

m
, the partial fraction decomposition contains the 

following sum of m partial fractions: 

 

where A1, A2, . . . , Am, B1, B2, . . . , Bm are constants to be determined. In the case where m 

= 1, only the first term in the sum appears. 

Example 2.17: Evaluate 

 

Solution. The denominator in the integrand can be factored by grouping: 
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Example 2.18: Evaluate 

 

Solution: 
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2.6 IMPROPER  INTEGRALS 

The definite integral 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

that [a, b] is a finite interval and that the limit that defines the integral exists; that is, the 

function f is integrable. 

Extending the concept of a definite integral to allow for infinite intervals of integration and 

integrands with vertical asymptotes within the interval of integration. The vertical asymptotes 

is called infinite discontinuities, and integrals with infinite intervals of integration or infinite 

discontinuities within the interval of integration is called improper integrals. Here are some 

examples: 

 Improper integrals with infinite intervals of integration: 

 

 Improper integrals with infinite discontinuities in the interval of integration: 

 

 Improper integrals with infinite discontinuities and infinite intervals of integration: 

 

 

2.6.1 Integrals over Infinite Intervals 

 

Definition The improper integral of f over the interval [a, +∞) is defined to be 
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In the case where the limit exists, the improper integral is said to converge, and the limit is 

defined to be the value of the integral. In the case where the limit does not exist, the improper 

integral is said to diverge, and it is not assigned a value. 

Example 2.19: Evaluate 

 

Solution (a): Following the definition, we replace the infinite upper limit by a finite upper 

limit b, and then take the limit of the resulting integral. This yields 

 

Since the limit is finite, the integral converges and its value is 1/2. 

Solution (b): 

 

In this case the integral diverges and hence has no value. 

Example 2.20: For what values of p does the integral  converge? 

Solution. We know from the preceding example that the integral diverges if p = 1, so let us 

assume that p ≠1. In this case we have 

 

If p > 1, then the exponent 1 − p is negative and b
1−p

→0 as b→+∞; and if p < 1, then the 

exponent 1 − p is positive and b
1−p

→+∞ as b→+∞. Thus, the integral converges if p > 1 and 

diverges otherwise. In the convergent case the value of the integral is 

 

The following theorem summarizes this result. 
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Example 2.21 Evaluate 

 

Solution. We begin by evaluating the indefinite integral using integration by parts. Setting u 

= 1 − x and dv = e
−x

 dx yields 

 

The limit is an indeterminate form of type ∞/∞, so we will apply L’Hôpital’s rule by 

differentiating the numerator and denominator with respect to b. This yields 

 

We can interpret this to mean that the net signed area between the graph of y = (1 − x)e
−x

 and 

the interval [0,+ ∞) is 0 (Figure). 

 

Definition The improper integral of f over the interval (−∞, b] is defined to be 

 

The integral is said to converge if the limit exists and diverge if it does not. 

The improper integral of f over the interval (−∞, +∞) is defined as 

 

where c is any real number. The improper integral is said to converge if both terms converge 

and diverge if either term diverges. 
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Example 2.22: Evaluate 

 

Solution. We will evaluate the integral by choosing c = 0. With this value for c we obtain 

 

Thus, the integral converges and its value is 

 

Since the integrand is nonnegative on the interval (−∞, +∞), the integral represents the area of 

the region shown in Figure 

 

2.6.2 Integrals Whose Integrands Have Infinite Discontinuities 

 

Definition If f is continuous on the interval [a, b], except for an infinite discontinuity at b, 

then the improper integral of f over the interval [a, b] is defined as 

 

In the case where the indicated limit exists, the improper integral is said to converge, and the 

limit is defined to be the value of the integral. In the case where the limit does not exist, the 

improper integral is said to diverge, and it is not assigned a value. 
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Example 2.23: Evaluate 

 

Solution. The integral is improper because the integrand approaches+∞ as x approaches the 

upper limit 1 from the left (Figure). 

 

 

 

 

Definition If f is continuous on the interval [a, b], except for an infinite discontinuity at a, 

then the improper integral of f over the interval [a, b] is defined as 

 

The integral is said to converge if the indicated limit exists and diverge if it does not. 

If f is continuous on the interval [a, b], except for an infinite discontinuity at a point c in (a, 

b), then the improper integral of f over the interval [a, b] is defined as 

 

where the two integrals on the right side are themselves improper. The improper integral on 

the left side is said to converge if both terms on the right side converge and diverge if either 

term on the right side diverges (Figure). 
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Example 2.24: Evaluate 

 

Solution (a). The integral is improper because the integrand 

approaches −∞ as x approaches the lower limit 1 from the right 

(Figure 7.8.10). From Definition 7.8.5 we obtain 

  

Solution (b). The integral is improper because the integrand approaches +∞ at x = 2, which is 

inside the interval of integration. From Definition 7.8.5 we obtain 

 

and we must investigate the convergence of both improper integrals on the right. Since 
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2 CHAPTER THREE                                                                              

3 INFINITE SERIES 

3.1 SEQUENCES 

3.1.1 Definition of a Sequence 

Stated informally, an infinite sequence, or more simply a sequence, is an unending 

succession of numbers, called terms. It is understood that the terms have a definite order; that 

is, there is a first term a1, a second term a2, a third term a3, a fourth term a4, and so forth. 

Such a sequence would typically be written as 

a1, a2, a3, a4, . . . 

               1, 2, 3, 4, . . . ,                                                1, 1/2 , 1/3, 1/4 , . . . , 

               2, 4, 6, 8, . . . ,                                                1,−1, 1,−1, . . . 

Example 1 In each part, find the general term of the sequence. 

 

Solution (a). 

  

Solution (b). 

  

Solution (c). 

 

Solution (d). 
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Definition A sequence is a function whose domain is a set of integers. 

3.1.2 Graphs of Sequences 

For example, the graph of the sequence {1 𝑛⁄ }𝑛=1
+∞  is the graph of the equation 

𝑦 =
1

𝑛
              𝑛 = 1, 2, 3, … .. 

𝑦 =
1

𝑥
              𝑥 ≥ 1 

 

Figure 1 

3.1.3 Limit of a Sequence 

 

 

Figure 2 
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Figure 3 

 

Example 2 The first two sequences in Figure 2 diverge, and the second two converge to 1; 

that is, 

 
 

 
 

Example 3 In each part, determine whether the sequence converges or diverges by examining 

the limit as n→+∞. 

 

Solution (a). Dividing numerator and denominator by n and using Theorem yields 
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Thus, the sequence converges to 1/2. 

Solution (b). This sequence is the same as that in part (a), except for the factor of (−1)
n+1

, 

which oscillates between +1 and −1. Thus, the terms in this sequence oscillate between 

positive and negative values, with the odd-numbered terms being identical to those in part (a) 

and the even-numbered terms being the negatives of those in part (a). Since the sequence in 

part (a) has a limit of 1/2, it follows that the odd-numbered terms in this sequence approach 

1/2, and the even-numbered terms approach −1/2. Therefore, this sequence has no limit—it 

diverges. 

Solution (c). Since (1/n)→0, the product (−1)
n+1 

(1/n) oscillates between positive and 

negative values, with the odd-numbered terms approaching 0 through positive values and the 

even-numbered terms approaching 0 through negative values. Thus, 

 

so the sequence converges to 0. 

Solution (d).  

 

 

Example 4 In each part, determine whether the sequence converges, and if so, find its limit. 

 

Solution. Replacing n by x in the first sequence produces the power function (1/2)
x
 , and 

replacing n by x in the second sequence produces the power function 2
x
 . Now recall that if 0 

< b < 1, then b
x
→0 as x→+∞, and if b > 1, then b

x
→+∞ as x→+∞ (Figure 1). 

Thus, 

 

So, the sequence {1/2
n
} converges to 0, but the sequence {2

n
} diverges. 
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Example 5 Find the limit of the sequence 

 

Solution. The expression 

 

is an indeterminate form of type ∞/∞, so L’Hôpital’s rule is indicated. However, we cannot 

apply this rule directly to n/e
n
 because the functions n and e

n
 have been defined here only at 

the positive integers, and hence are not differentiable functions. To circumvent this problem 

we extend the domains of these functions to all real numbers, here implied by replacing n by 

x, and apply L’Hôpital’s rule to the limit of the quotient x/e
x
. This yields 

 

from which we can conclude that 

 

Example 6 Show that 

 

Solution. 

 

By L’Hôpital’s rule applied to (1/x) ln x 

 

Theorem A sequence converges to a limit L if and only if the sequences of even-numbered 

terms and odd-numbered terms both converge to L. 

 

Example 7 The sequence 

 

converges to 0, since the even-numbered terms and the odd-numbered terms both converge to 

0, and the sequence 

 

diverges, since the odd-numbered terms converge to 1 and the even-numbered terms 

converge to 0. 
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3.1.4 The Squeezing Theorem for Sequences 

 

Example 8 Use numerical evidence to make a conjecture about the limit of the sequence 

 

and then confirm that your conjecture is correct. 

Solution. The following table, which was obtained with a calculating 

utility, suggests that the limit of the sequence may be 0. To confirm this 

we need to examine the limit of 

 

As n→+∞. Although this is an indeterminate form of type ∞/∞, 

L’Hôpital’s rule is not helpful because we have no definition of x! for values of x that are not 

integers. However, let us write out some of the initial terms and the general term in the 

sequence: 

 
If n > 1, the general term of the sequence can be rewritten as 

 

from which it follows that an ≤ 1/n (why?). It is now evident that 

 

However, the two outside expressions have a limit of 0 as n→+∞; thus, the Squeezing 

Theorem for Sequences implies that an→0 as n→+∞, which confirms our conjecture. 
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Example 9 Consider the sequence 

 

If we take the absolute value of each term, we obtain the sequence 

 

which, as shown in Example 4, converges to 0. Thus, from Theorem we have 

 

 

3.2 MONOTONE SEQUENCES 

3.2.1 Terminology 

 

Some examples are given in the below table 
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Figure 4 

3.2.2 Testing for Monotonicity 

Frequently, one can guess whether a sequence is monotone or strictly monotone by writing 

out some of the initial terms.  

However, to be certain that the guess is correct, one must give a precise mathematical 

argument. The below table provides two ways of doing this, one based on differences of 

successive terms and the other on ratios of successive terms.  

 

Example 10 Use differences of successive terms to show that 

 

 (Figure 4) is a strictly increasing sequence. 

Solution. The pattern of the initial terms suggests that the 

sequence is strictly increasing. To prove that this is so, let  
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We can obtain an+1 by replacing n by n + 1 in this formula. This yields 

 

Thus, for n ≥ 1 

 

which proves that the sequence is strictly increasing. 

Example 11 Use ratios of successive terms to show that the sequence in Example 10 is 

strictly increasing. 

Solution. As shown in the solution of Example 10, 

 

Forming the ratio of successive terms we obtain 

 

from which we see that an+1/an > 1 for n ≥ 1. This proves that the sequence is strictly 

increasing. 

Example 12 In Examples 10 and 11 we proved that the sequence 

 

is strictly increasing by considering the difference and ratio of successive terms. 

Alternatively, we can proceed as follows. Let 

 

so that the nth term in the given sequence is an = f(n). The function f is increasing for x ≥ 1 

since 

 

Thus, an = f(n) < f(n + 1) = an+1 

which proves that the given sequence is strictly increasing. 

In general, if f(n) = an is the nth term of a sequence, and if f is differentiable for x ≥ 1, then 

the results in Table can be used to investigate the monotonicity of the sequence. 
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3.2.3 Properties That Hold Eventually 

Definition If discarding finitely many terms from the beginning of a sequence produces a 

sequence with a certain property, then the original sequence is said to have that property 

eventually. 

Example 13 Show that the sequence {
10𝑛

𝑛!
}

𝑛=1

+∞

 is eventually strictly decreasing. 

Solution. We have 

     (A) 

From (A), an+1/an < 1 for all n ≥ 10, so the sequence is eventually strictly decreasing, as 

confirmed by the graph in Figure 5. 

 

Figure 5 

3.2.4 Convergence of Monotone Sequences 
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Example 14 Show that the sequence {
10𝑛

𝑛!
}

𝑛=1

+∞

 converges and find its limit. 

Solution. We showed in Example 13 that the sequence is eventually strictly decreasing. Since 

all terms in the sequence are positive, it is bounded below by M = 0, and hence Theorem 

guarantees that it converges to a nonnegative limit L. However, the limit is not evident 

directly from the formula 10
n
/n! for the nth term, so we will need some ingenuity to obtain it. 

It follows from Formula (A) of Example 13 that successive terms in the given sequence are 

related by the recursion formula 

 

where an = 10
n
/n!. We will take the limit as n→+∞ of both sides and use the fact that 

 

We obtain 

 

so that 

 

 

In the exercises we will show that the technique illustrated in the last example can be adapted 

to obtain 
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3.3 INFINITE SERIES 

3.3.1 Sums of Infinite Series 

Definition An infinite series is an expression that can be written in the form 

 

The numbers u1, u2, u3, . . . are called the terms of the series. 

 

Example of infinite series 

 

or, equivalently, 

 

 

 

 

The number sn is called the nth partial sum of the series and the sequence {sn}
+∞

n=1 is called 

the sequence of partial sums. 

Definition Let {sn} be the sequence of partial sums of the series 

u1 + u2 + u3 +· · ·+uk +· · · 

If the sequence {sn} converges to a limit S, then the series is said to converge to S, and S is 

called the sum of the series. We denote this by writing 

𝑆 = ∑ 𝑢𝑘

∞

𝑘=1
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If the sequence of partial sums diverges, then the series is said to diverge. A divergent series 

has no sum. 

Example 15 Determine whether the series 

1 − 1 + 1 − 1 + 1 − 1+· · · 

converges or diverges. If it converges, find the sum. 

Solution. 

s1 = 1 

s2 = 1 − 1 = 0 

s3 = 1 − 1 + 1 = 1 

s4 = 1 − 1 + 1 − 1 = 0 

and so forth. Thus, the sequence of partial sums is 

1, 0, 1, 0, 1, 0, . . . 

(Figure 6). Since this is a divergent sequence, the given series diverges and consequently has 

no sum. 

 

Figure 6 

3.3.2 Geometric Series 

 

Example 16 In each part, determine whether the series converges, and if so find its sum. 

 



Chapter 3: Infinite Series 

3-14 
 

Solution (a). This is a geometric series with a = 5 and r = 1/4. 

Since |r| = 1/4 < 1, the series converges and the sum is 

 

 

Solution (b). This is a geometric series in concealed form, since we can rewrite it as 

 

Since r = 9/5> 1, the series diverges. 

Example 17 Find the rational number represented by the repeating decimal 

0.784784784 . . . 

Solution. We can write 

0.784784784 . . . = 0.784 + 0.000784 + 0.000000784+· · · 

so the given decimal is the sum of a geometric series with a = 0.784 and r = 0.001. Thus, 

 

Example 18 In each part, find all values of x for which the series converges, and find the sum 

of the series for those values of x. 

 

Solution (a). The expanded form of the series is 

 

The series is a geometric series with a = 1 and r = x, so it converges if |x| < 1 and diverges 

otherwise. When the series converges its sum is 

 

Solution (b). This is a geometric series with a = 3 and r = −x/2. It converges if | −x/2| < 1, or 

equivalently, when |x| < 2. When the series converges its sum is 
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3.3.3 Telescoping Sums 

Example 19 Determine whether the series 

 

converges or diverges. If it converges, find the sum. 

Solution. The nth partial sum of the series is 

 

We will begin by rewriting sn in closed form. This can be accomplished by using the method 

of partial fractions to obtain (verify). 

 

from which we obtain the sum 

 

3.3.4 Harmonic Series 

One of the most important of all diverging series is the harmonic series, 

 

which arises in connection with the overtones produced by a vibrating musical string. It is not 

immediately evident that this series diverges. However, the divergence will become apparent 

when we examine the partial sums in detail. Because the terms in the series are all positive, 

the partial sums 

 

form a strictly increasing sequence 

s1 < s2 < s3 < · · · < sn < · · · 
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3.4 CONVERGENCE TESTS 

3.4.1 The Divergence Test 

 

 

Example 20 The series 

 

diverges since 
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3.4.2 Algebraic Properties of Infinite Series 

 

Example 21 Find the sum of the series 

 

Solution. The series 

 

is a convergent geometric series (a = 3/4, r = 1/4), and the series 

 

is also a convergent geometric series (a = 2, r = 1/5). Thus, 
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3.4.3 The Integral Test 

 

Example 22 Show that the integral test applies, and use the integral test to determine whether 

the following series converge or diverge. 

 

Solution (a). We already know that this is the divergent harmonic series, so the integral test 

will simply illustrate another way of establishing the divergence. Note first that the series has 

positive terms, so the integral test is applicable. If we replace k by x in the general term 1/k, 

we obtain the function f(x) = 1/x, which is decreasing and continuous for x ≥ 1 (as required to 

apply the integral test with a = 1). Since 

 

the integral diverges and consequently so does the series. 

Solution (b). Note first that the series has positive terms, so the integral test is applicable. If 

we replace k by x in the general term 1/k
2
, we obtain the function f(x) = 1/x

2
, which is 

decreasing and continuous for x ≥ 1. Since 

 

the integral converges and consequently the series converges by the integral test with a = 1. 
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3.4.4 p-Series 

The special cases of a class of series called p-series or hyperharmonic series. A p-series is an 

infinite series of the form 

 

Where p > 0. Examples of p-series are 

 

 

Example 23 

 

diverges since it is a p-series with p = 1/3< 1. 
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3.5 THE COMPARISON, RATIO, AND ROOT TESTS 

3.5.1 The Comparison Test 

 

There are two steps required for using the comparison test to determine whether a series Ʃuk 

with positive terms converges: 

Step 1. Guess at whether the series Ʃuk converges or diverges. 

Step 2. Find a series that proves the guess to be correct. That is, if we guess that Ʃuk diverges, 

we must find a divergent series whose terms are “smaller” than the corresponding terms of 

Ʃuk, and if we guess that Ʃuk converges, we must find a convergent series whose terms are 

“bigger” than the corresponding terms of Ʃuk. 

Informal principle (1) Constant terms in the denominator of uk can usually be deleted 

without affecting the convergence or divergence of the series. 

Informal principle (2) If a polynomial in k appears as a factor in the numerator or 

denominator of uk, all but the leading term in the polynomial can usually be discarded 

without affecting the convergence or divergence of the series. 

Example 24 Use the comparison test to determine whether the following series converge or 

diverge. 

 

Solution (a). According to Principle 1, we should be able to drop the constant in the 

denominator without affecting the convergence or divergence. Thus, the given series is likely 

to behave like 

(1) 

which is a divergent p-series (p = 1/2). Thus, we will guess that the given series diverges and 

try to prove this by finding a divergent series that is “smaller” than the given series. However, 

series (1) does the trick since 
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Thus, we have proved that the given series diverges. 

Solution (b). According to Principle 2, we should be able to discard all but the leading term 

in the polynomial without affecting the convergence or divergence. Thus, the given series is 

likely to behave like 

       (2) 

which converges since it is a constant times a convergent p-series (p = 2). Thus, we will 

guess that the given series converges and try to prove this by finding a convergent series that 

is “bigger” than the given series. However, series (2) does the trick since 

 

Thus, we have proved that the given series converges. 

3.5.2 The Ratio Test 

 

Example 25 Each of the following series has positive terms, so the ratio test applies. In each 

part, use the ratio test to determine whether the following series converge or diverge. 

 

Solution (a). The series converges, since 

 

Solution (b). The series converges, since 

 

Solution (c). The series diverges, since 
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Solution (d). The series diverges, since 

 

Solution (e). The ratio test is of no help since 

 

However, the integral test proves that the series diverges since 

 

Both the comparison test and the limit comparison test would also have worked here (verify). 

3.5.3 The Root Test 

 

Example 26 Use the root test to determine whether the following series converge or diverge. 

 

Solution (a). The series diverges, since 

 

Solution (b). The series converges, since 
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3.5.4 ALTERNATING SERIES; ABSOLUTE AND CONDITIONAL 

CONVERGENCE 

3.5.5 Alternating Series 

 

 

Example 27 Use the alternating series test to show that the following series converge. 

 

Solution (a). The two conditions in the alternating series test are satisfied since 

 

Solution (b). The two conditions in the alternating series test are satisfied since 

 

so 

ak > ak+1 

and 
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3.5.6 Absolute Convergence 

 

Example 28 Determine whether the following series converge absolutely. 

 

Solution (a). The series of absolute values is the convergent geometric series 

 

so the given series converges absolutely. 

Solution (b). The series of absolute values is the divergent harmonic series 

 

so the given series diverges absolutely. 

 

 

Example 29 Show that the following series converge. 

 

Solution (a). Observe that this is not an alternating series because the signs alternate in pairs 

after the first term. Thus, we have no convergence test that can be applied directly. However, 
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we showed in Example 28(a) that the series converges absolutely, so Theorem implies that it 

converges (Figure a). 

Solution (b). With the help of a calculating utility, you will be able to verify that the signs of 

the terms in this series vary irregularly. Thus, we will test for absolute convergence. The 

series of absolute values is 

 

  

But Ʃ1/k
2
 is a convergent p-series (p = 2), so the series of absolute values converges by the 

comparison test. Thus, the given series converges absolutely and hence converges (Figure b). 

3.5.7 Conditional Convergence 

Example 30 In Example 27(b) we used the alternating series test to show that the series 

 

converges. Determine whether this series converges absolutely or converges conditionally. 

Solution. We test the series for absolute convergence by examining the series of absolute 

values:  

 

Principle 2 suggests that the series of absolute values should behave like the divergent p-

series with p = 1. To prove that the series of absolute values diverges, we will apply the limit 

comparison test with 
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We obtain 

 

Since ρ is finite and positive, it follows from the limit comparison test that the series of 

absolute values diverges. Thus, the original series converges and also diverges absolutely, 

and so converges conditionally. 

3.5.8 The Ratio Test for Absolute Convergence 

 

Example 31 Use the ratio test for absolute convergence to determine whether the series 

converges. 

 

Solution (a). Taking the absolute value of the general term uk we obtain 

 

which implies that the series converges absolutely and therefore converges. 

Solution (b). Taking the absolute value of the general term uk we obtain 

 

which implies that the series diverges. 
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3.6 MACLAURIN AND TAYLOR POLYNOMIALS 

3.6.1 Local Quadratic Approximations 

- The local linear approximation of a function f at x0 is 

 

- to approximate the function f at x0 by a polynomial p of 

degree 2 with the property that the value of p and the 

values of its first two derivatives match those of f at x0.  

- The polynomial p is called the local quadratic approximation of f at x = x0. 

- This approximation has the form 

 

 (1) 

Example 32 Find the local linear and quadratic approximations of e
x
 at x = 0, and graph ex 

and the two approximations together. 

Solution. If we let f(x) = e
x
, then f’(x) = f"(x) = e

x
; and hence  

f(0) = f’(0) = f"(0) = e
0
 = 1 

Thus, from (1) the local quadratic approximation of e
x
 at x = 0 is 

 

and the local linear approximation 

 

 

The graphs of e
x
 and the two approximations are shown in Figure. As expected, the local 

quadratic approximation is more accurate than the local linear approximation near x = 0. 
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3.6.2 Maclaurin Polynomials 

It is natural to ask whether one can improve on the accuracy of a local quadratic 

approximation by using a polynomial of degree 3. 

 

Problem Given a function f that can be differentiated n times at x = x0, find a polynomial p of 

degree n with the property that the value of p and the values of its first n derivatives match 

those of f at x0. 

 

We will begin by solving this problem in the case where x0 = 0. Thus, we want a polynomial 

 

 

Definition If f can be differentiated n times at 0, then we define the nth Maclaurin 

polynomial for f to be 

 

Example 33 Find the Maclaurin polynomials p0, p1, p2, p3, and pn for e
x
 . 

Solution. Let f(x) = e
x
. Thus, 
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Example 34 Find the nth Maclaurin polynomials for 

(a) sin x                              (b) cos x 

Solution (a). In the Maclaurin polynomials for sin x, only the odd powers of x appear 

explicitly. To see this, let f(x) = sin x; thus, 

 

Since f
(4)

(x) = sin x = f(x), the pattern 0, 1, 0, −1 will repeat as we evaluate successive 

derivatives at 0. Therefore, the successive Maclaurin polynomials for sin x are 

 

Because of the zero terms, each even-order Maclaurin polynomial [after p0(x)] is the same as 

the preceding odd-order Maclaurin polynomial. That is, 

 

The graphs of sin x, p1(x), p3(x), p5(x), and p7(x) are shown in Figure. 
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Solution (b). In the Maclaurin polynomials for cos x, only the even powers of x appear 

explicitly; the computations are similar to that in part (a). The reader should be able to show 

that 

 

In general, the Maclaurin polynomials for cos x are given by 

 

The graphs of cos x, p0(x), p2(x), p4(x), and p6(x) are shown in Figure. 

 

 

3.6.3 Taylor Polynomials 

- Up to now we have focused on approximating a function f in the vicinity of x = 0.  

- Now we will consider the more general case of approximating f in the vicinity of an 

arbitrary domain value x0. 

Definition If f can be differentiated n times at x0, then we define the nth Taylor polynomial 

for f about x = x0 to be 
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Example 35 Find the first four Taylor polynomials for ln x about x = 2. 

Solution. Let f(x) = ln x. Thus, 

 

 

The graph of ln x (in blue) and its first four Taylor polynomials about x = 2 are shown in 

Figure. As expected, these polynomials produce their best approximations of ln x near 2. 
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3.7 MACLAURIN AND TAYLOR SERIES; POWER SERIES 

3.7.1 Maclaurin and Taylor Series 

 

Example 36 Find the Maclaurin series for 

(a) e
x
    (b) sin x   (c) cos x 

Solution (a). From previous example, we found that the nth Maclaurin polynomial for e
x
 is 

 

Thus, the Maclaurin series for e
x
 is 

 

Solution (b). From previous example, we found that the Maclaurin polynomials for sin x are 

given by 

 
Thus, the Maclaurin series for sin x is 

 

Solution (c). From previous example, we found that the Maclaurin polynomials for cos x are 

given by 

 
Thus, the Maclaurin series for cos x is 
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3.7.2 Power Series in x 

If c0, c1, c2, . . . are constants and x is a variable, then a series of the form 

 

is called a power series in x. Some examples are 

 

These are the Maclaurin series for the functions 1/(1 − x), e
x
 , and cos x, respectively. Indeed, 

every Maclaurin series 

 

is a power series in x. 

3.7.3 Radius and Interval of Convergence 
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3.7.4 Finding the Interval of Convergence 

Example 37 Find the interval of convergence and radius of convergence of the following 

power series. 

 

Solution (1). Applying the ratio test for absolute convergence to the given series, we obtain 

 

Since ρ < 1 for all x, the series converges absolutely for all x. Thus, the interval of 

convergence is (−∞, +∞) and the radius of convergence is R = +∞. 

Solution (2). If x ≠ 0, then the ratio test for absolute convergence yields 

 

Therefore, the series diverges for all nonzero values of x. Thus, the interval of convergence is 

the single value x = 0 and the radius of convergence is R = 0. 

3.7.5 Power Series in x – x0 
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Example 38 Find the interval of convergence and radius of convergence of the series 

 

Solution. We apply the ratio test for absolute convergence. 

 

Thus, the series converges absolutely if |x − 5| < 1, or −1 < x − 5 < 1, or 4 < x < 6. The series 

diverges if x < 4 or x > 6. 

To determine the convergence behaviour at the endpoints x = 4 and x = 6, we substitute these 

values in the given series. If x = 6, the series becomes 

 

which is a convergent p-series (p = 2). If x = 4, the series becomes 

 

Since this series converges absolutely, the interval of convergence for the given series is [4, 

6]. The radius of convergence is R = 1 (Figure). 
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3.7.6 Estimating the nth Remainder 

Rn(x) denote the difference between f(x) and its nth Taylor polynomial; that is, 

 

 

 

Example 39 Use an nth Maclaurin polynomial for e
x
 to approximate e to five decimal place 

accuracy. 

Solution. We note first that the exponential function e
x
 has derivatives of all orders for every 

real number x. From previous example, the nth Maclaurin polynomial for e
x
 is 

 

from which we have 

 

Thus, our problem is to determine how many terms to include in a Maclaurin polynomial for 

e
x
 to achieve five decimal-place accuracy; that is, we want to choose n so that the absolute 

value of the nth remainder at x = 1 satisfies 

|Rn(1)| ≤ 0.000005 

To determine n we use the Remainder Estimation Theorem with f(x) = e
x
, x = 1, x0 = 0, and 

the interval [0, 1]. In this case it follows that 
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where M is an upper bound on the value of f
(n+1)

(x) = e
x
 for x in the interval [0, 1]. However, 

e
x
 is an increasing function, so its maximum value on the interval [0, 1] occurs at x = 1; that 

is, e
x
 ≤ e on this interval. Thus, we can take M = e to obtain 

 
Unfortunately, this inequality is not very useful because it involves e, which is the very 

quantity we are trying to approximate. However, if we accept that e < 3, then we can replace 

(previous equation) with the following less precise, but more easily applied, inequality: 

 
Thus, we can achieve five decimal-place accuracy by choosing n so that 

 

Since 9! = 362,880 and 10! = 3,628,800, the smallest value of n that meets this criterion is n = 

9. Thus, to five decimal-place accuracy 

 

As a check, a calculator’s 12-digit representation of e is e ≈ 2.71828182846, which agrees 

with the preceding approximation when rounded to five decimal places. 
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3.8 DIFFERENTIATING AND INTEGRATING POWER SERIES; 

MODELING WITH TAYLOR SERIES 

3.8.1 Differentiating Power Series 

 

 

Example 40 we showed that the 4 function J0(x), represented by the power series 

         (1) 

has radius of convergence +∞. Thus, J0(x) has derivatives of all orders on the interval (−∞, 

+∞), and these can be obtained by differentiating the series term by term. For example, if we 

write (1) as 
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3.8.2 Integrating Power Series 

 

3.8.3 Some Practical Ways to Find Taylor Series 

Example 41 Find Taylor series for the given functions about the given x0. 

 

Solution (a). The simplest way to find the Maclaurin series for 𝑒−𝑥2
 is to substitute −x

2
 for x 

in the Maclaurin Series 

 

Since converges for all values of x, so will the series for 𝑒−𝑥2
. 

Solution (b). We begin with the Maclaurin series for ln(1 + x), 
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Since the original series converges when −1 < x ≤ 1, the interval of convergence will be −1 < 

x − 1 ≤ 1 or, equivalently, 0 < x ≤ 2. 

Example 42 Find the Maclaurin series for tan−
1
 x. 

Solution. It would be tedious to find the Maclaurin series directly. A better approach is to 

start with the formula 

 

and integrate the Maclaurin series 

 

The constant of integration can be evaluated by substituting x = 0 and using the condition    

tan−
1
0 = 0. This gives C = 0, so that 

 

3.8.4 Approximating Definite Integrals Using Taylor Series 

Example 43 Approximate the integral 

 

To three decimal-place accuracy by expanding the integrand in a Maclaurin series and 

integrating term by term. 

Solution. We found in Example 41(a) that the Maclaurin series for 𝑒−𝑥2
is 
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-  

Since this series clearly satisfies the hypotheses of the alternating series test, it follows from 

Theorem that if we approximate the integral by sn (the nth partial sum of the series), then 

 

Thus, for three decimal-place accuracy we must choose n such that 

 

With the help of a calculating utility you can show that the smallest value of n that satisfies 

this condition is n = 5. Thus, the value of the integral to three decimal-place accuracy is 

 

3.8.5 Finding Taylor Series by Multiplication and Division 

Example 44 Find the first three nonzero terms in the Maclaurin series for the function 

 

Solution. Using the series for e
−x2

 and tan
−1

 x obtained in previous examples gives 

 



Chapter 3: Infinite Series 

3-42 
 

 

Example 45 Find the first three nonzero terms in the Maclaurin series for tan x. 

Solution. Using the first three terms in the Maclaurin series for sin x and cos x, we can 

express tan x as 

 

Dividing, as shown in the margin, we obtain 
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3 CHAPTER FOUR                                                                              

4 PARAMETRIC AND POLAR CURVES 

4.1 PARAMETRIC EQUATIONS; TANGENT LINES AND ARC 

LENGTH FOR PARAMETRIC CURVES 

4.1.1 Parametric Equations 

Suppose that a particle moves along a curve C in the xy-plane in such a way that its x- and y-

coordinates, as functions of time, are 

x = f(t),       y = g(t) 

We call these the parametric equations of motion for the particle and refer to C as the 

trajectory of the particle or the graph of the equations (Figure 4-1). The variable t is called 

the parameter for the equations. 

 

Example 1 Sketch the trajectory over the time interval 0 ≤ t ≤ 10 of the particle whose 

parametric equations of motion are 

x = t − 3 sin t,      y = 4 − 3 cos t 

Solution. 

  

                                                  Figure 4-1 
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Example 2 :   Find the graph of the parametric equations  

x = cost,  y = sint  (0 ≤ t ≤ 2π)  

Solution.  

One way to find the graph is to eliminate the parameter t by noting that  

x
2
 + y

2
 = sin

2
 t + cos

2
 t =1 

 

Thus, the graph is contained in the unit circle x
2
 + y

2
 =1. Geometrically, the parameter t can 

be interpreted as the angle swept out by the radial line from the origin to the point (x, y) = 

(cos t, sin t) on the unit circle (Figure). As t increases from 0 to 2π, the point traces the circle 

counterclockwise, starting at (1, 0) when t = 0 and completing one full revolution when t =2π. 

One can obtain different portions of the circle by varying the interval over which the 

parameter varies. 

4.1.2 Tangent Lines To Parametric Curves  

We will be concerned with curves that are given by parametric equations 

x =f(t),   y=g(t) 

 in which f(t)and g(t) have continuous first derivatives with respect to t.It can be proved that if 

dx/dt ≠ 0, then y is a differentiable function of x, in which case the chain rule implies that 

 

This formula makes it possible to find dy/dx directly from the parametric equations without 

eliminating the parameter. 
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Example 3  

Find the slope of the tangent line to the unit circle  

x = cos t, y = sin t  ( 0 ≤ t  ≤ 2π) 

 at the point where t =π/6 (Figure). 

Solution. the slope at a general point on the circle is 

 

 

 

Example 4  

In a disastrous first flight, an experimental paper airplane follows the trajectory of the particle 

in Example 1: 

x = t − 3 sin t,   y = 4 − 3 cos t   (t ≥ 0) 

but crashes into a wall at time t =10 (Figure). 

(a) At what times was the airplane flying horizontally?  

(b) At what times was it flying vertically? 

Solution (a). The airplane was flying horizontally at those times when dy/dt = 0 and dx/dt ≠ 

0. From the given trajectory we have 
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Solution (b). The airplane was flying vertically at those times when dx/dt = 0 and dy/dt ≠ 0.  
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Example 7  

Without eliminating the parameter, find dy/dx and d
2
y/dx

2
 at (1, 1) and (1, −1) on the 

semicubical parabola given by the parametric equations.   x =t
2
 ,         y =t

3
  

Solution.  

 

 

4.1.3 Arc Length of Parametric Curves 
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Example 8 

Find the circumference of a circle of radius a from the parametric equations    

x =a cost,            y =a sin t   ( 0 ≤ t ≤ 2π) 

Solution. 

 

4.2 POLAR COORDINATES 

4.2.1 Polar Coordinate Systems 

 A polar coordinate system in a plane consists of a fixed point O, called the pole (or origin), 

and a ray emanating from the pole, called the polar axis. 

we can associate with each point P in the plane a pair of polar coordinates (r, θ), where r is 

the distance from P to the pole and θ is an angle from the polar axis to the ray OP (Figure). 

The number r is called the radial coordinate of P and the number θ the angular coordinate(or 

polar angle) of P. 
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As suggested by Figure, these coordinates are related by the equations 

 

                 (1) 

These equations are well suited for finding x and y when r and θ are known. However, to find 

r and θ when x and y are known, it is preferable to use the identities sin
2
 θ +cos

2
 θ =1 and 

tanθ = sinθ / cosθ to rewrite (1) as 

   (2) 

Example 9  

Find the rectangular coordinates of the point P whose polar coordinates are (r, θ) =(6, 2π/3) 

(Figure).  

Solution. Substituting the polar coordinates r =6 and θ =2π/3 in (1) 

yields 

 

 

Example 10 

Find polar coordinates of the point P whose rectangular coordinates are (−2,−2√3) (Figure). 

Solution.  

We will find the polar coordinates (r, θ) of P that satisfy the conditions r > 0 and 0 ≤ θ < 2π.  
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4.2.2 Graphs in Polar Coordinates 

Example 11  

Sketch the graphs of  (a) r =1  (b) θ =π /4     in polar coordinates. 

Solution (a). For all values of θ, the point (1, θ)is 1 unit away from the pole. Since θ is 

arbitrary, the graph is the circle of radius 1 centered at the pole (Figure a). 

Solution (b). For all values of r, the point (r, π/4) lies on a line that makes an angle of π/4 

with the polar axis (Figure b). Positive values of r correspond to points on the line in the first 

quadrant and negative values of r to points on the line in the third quadrant. Thus, in absence 

of any restriction on r, the graph is the entire line. Observe, however, that had we imposed 

the restriction r ≥ 0, the graph would have been just the ray in the first quadrant. 
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Example 12  

Sketch the graph of the equation r = sinθ in polar coordinates by plotting points 

Solution. Table 1 shows the coordinates of points on the graph at increments of π/6. These 

points are plotted in Figure1. Note, however, that there are 13 points listed in the table but 

only 6 distinct plotted points. This is because the pairs from θ =π on yield 

 

 

Observe that the points in Figure appear to lie on a circle. We can confirm that this is so by 

expressing the polar equation r = sinθ in terms of x and y. To do this, we multiply the 

equation through by r to obtain 
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Example 13  

                   Sketch the graph of r = cos2θ in polar coordinates 

Solution. Instead of plotting points, we will use the graph of r = cos2θ in rectangular 

coordinates (Figure a) to visualize how the polar graph of this equation is generated. The 

analysis and the resulting polar graph are shown in Figure b. This curve is called a four-petal 

rose. 

 
Figure a 

 
Figure b 

4.2.3 Symmetry Tests 

Theorem (Symmetry Tests)  

(a) A curve in polar coordinates is symmetric about the x-axis if replacing θ by −θ in its 

equation produces an equivalent equation (Figure a). 

(b) A curve in polar coordinates is symmetric about the y-axis if replacing θ by π−θ in its 

equation produces an equivalent equation (Figure b).  

(c) A curve in polar coordinates is symmetric about the origin if replacing θ by θ+π, or 

replacing r by −r in its equation produces an equivalent equation (Figure c). 
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Example 14  

Use Theorem to confirm that the graph of r =cos2θ in Figure is symmetric about the x-axis 

and y-axis.  

Solution. To test for symmetry about the x-axis, we replace θ by −θ. This yields A 

Note: A graph that is symmetric about both the x-axis and the y-axis is also symmetric about 

the origin. Use Theorem (c) to verify that the curve in Example 14 is symmetric about the 

origin. 

 

 

Example 15  

Sketch the graph of r =a (1−cosθ)in polar coordinates, assuming a to be a positive constant.  

Solution. Observe first that replacing θ by −θ does not alter the equation, so we know in 

advance that the graph is symmetric about the polar axis. Thus, if we graph the upper half of 

the curve, then we can obtain the lower half by reflection about the polar axis. As in our 

previous examples, we will first graph the equation in rectangular θ r-coordinates. This graph, 

which is shown in Figure a, can be obtained by rewriting the given equation as r =a −a cosθ, 

from which we see that the graph in rectangular θ r-coordinates can be obtained by first 

reflecting the graph of r =a cosθ about the x-axis to obtain the graph of r = − a cosθ, and then 

translating that graph up a units to obtain the graph of r =a − a cosθ. Now we can see the 

following:  

• As θ varies from 0 to π/3, r increases from 0 to a/2.  

• As θ varies from π/3 to π/2, r increases from a/2 to a. 
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• As θ varies from π/2 to 2π/3, r increases from a to 3a/2.  

• As θ varies from 2π/3 to π, r increases from 3a/2 to 2a. 

This produces the polar curve shown in Figure b. The rest of the curve can be obtained by 

continuing the preceding analysis from π to 2π or, as noted above, by reflecting the portion 

already graphed about the x-axis (Figure c). This heart-shaped curve is called a cardioid 

(from the Greek word kardia meaning “heart” ) 

 

4.3 TANGENT LINES, ARC LENGTH, AND AREA FOR POLAR 

CURVES 

4.3.1 Tangent Lines To Polar Curves 

Our first objective in this section is to find a method for obtaining slopes of tangent lines to 

polar curves of the form r =f(θ)in which r is a differentiable function of θ. We showed in the 

last section that a curve of this form can be expressed parametrically in terms of the 

parameter θ by substituting f(θ) for r in the equations x = r cosθ and y = r sinθ. This yields  

x = f(θ) cosθ ,           y = f(θ) sinθ 

 

Thus, if dx/dθ and dy/dθ are continuous and if dx/dθ ≠ 0, then y is a differentiable function of 

x, and Formula (4) in with θ in place of t yields 

 

 



Chapter 4: Parametric and Polar Curves 

4-13 
 

Example 16  

Find the slope of the tangent line to the circle r =4 cosθ at the point where θ =π/4. 

 

 

Example 17  

Find the points on the cardioid r =1− cosθ at which there is a horizontal tangent line, a 

vertical tangent line, or a singular point. 
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